International Journal of Engineering, Science and Mathematics

Vol. 6 Issue 6, October 2017,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijmra.us, Email: editorijmie@ gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

On a Polynomial Solutions of a Diophantine Equation

Manju Somanath*
K. Raja**
J. Kannan***

Abstract

Let $P:=P(t)$ be a polynomial in $\boldsymbol{Z}[x]$. In this paper, we consider the polynomial solutions of Diophantine equation $D: K^{2}-56 R^{2}-$ $32 K-224 R-224=0$. We also obtain some formulae and recurrence relations on the polynomial solution $\left(K_{n}, R_{n}\right)$ of D.

Keywords:

Pell equation,
Diophantine equation
Polynomial solution,
Continued fraction expansion.
Copyright © 2017 International Journals of Multidisciplinary Research Academy. All rights reserved.

Author correspondence:

K. Raja,

Assistant Professor,
Department of Mathematics, National College, Bharathidasan University, Trichy, India.
Email: rajakonline@gmail.com

1. Introduction

A Diophantine equation is a polynomial equation $P\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0$ where the polynomial P has integral coefficients and one is interested in solutions for which all the unknowns take integer values. For example, $x^{2}+y^{2}=z^{2}$ and $x=3, y=4, z=5$ is one of its infinitely many solutions. Another example is $x+y=1$ and all its solutions are given by $x=t, y=1-t$ where t passes through all integers. A third example is $x^{2}+4 y=3$. This Diophantine equation has no solutions, although note that $x=0, y=\frac{3}{4}$ is a solution with rational values for the unknowns. Diophantine equations are rich in variety. Two - variable Diophantine equation have been a subject to extensive research, and their theory constitutes one of the most beautiful, most elaborate part of mathematics, which nevertheless still keeps some of its secrets for the next generation of researchers.

In this paper, we investigate positive integral solutions of the Diophantine equation $K^{2}-56 R^{2}-$ $32 K-224 R-224=0$ which is transformed into a Pell's equation and is solved by various methods.
2. THE DIOPHANTINE EQUATION $K^{2}-56 R^{2}-32 K-224 R-224=0$

Consider the Diophantine equation

$$
\begin{equation*}
D: K^{2}-56 R^{2}-32 K-224 R-224=0 \tag{1}
\end{equation*}
$$

to be solved over \boldsymbol{Z}. It is not easy to solve and find the nature and properties of the solutions of (1). So we apply a linear transformation T to (1) to transfer to a simpler form for which we can determine the integral solutions.

Let

$$
T:\left\{\begin{array}{l}
K=x+h \tag{2}\\
R=y+k
\end{array}\right.
$$

be the transformation where $h, k \in \boldsymbol{Z}$.

[^0]Applying T to D, we get

$$
\begin{equation*}
T(D)=\widetilde{D}:(x+h)^{2}-56(y+k)^{2}-32(x+h)-224(y+k)=224 \tag{3}
\end{equation*}
$$

Equating the coefficients of x and y to zero, we get $h=16$ and $k=-2$. Hence for $K=x+16$ and $R=y-$ 2, we have the Diophantine equation

$$
\begin{equation*}
\widetilde{D}: x^{2}-56 y^{2}=256 \tag{4}
\end{equation*}
$$

which is a Pell equation. Now we try to find all integer solutions $\left(x_{n}, y_{n}\right)$ of \widetilde{D} and then we can retransfer all results from \widetilde{D} to D by using the inverse of T.

Theorem 2.1:

Let \widetilde{D} be the Diophantine equation in (4). Then
(i) The continued fraction expansion of $\sqrt{56}$ is

$$
\sqrt{56}=[7 ; \overline{2,14}]
$$

(ii) The fundamental solution of $x^{2}-56 y^{2}=1$ is $\left(u_{1}, v_{1}\right)=(15,2)$
(iii) For $n \geq 4$,

$$
\begin{aligned}
u_{n} & =31\left(u_{n-1}-u_{n-2}\right)+u_{n-3} \\
v_{n} & =31\left(v_{n-1}-v_{n-2}\right)+v_{n-3}
\end{aligned}
$$

Proof:

(i) The continued fraction expansion of $\sqrt{56}=7+(\sqrt{56}-7)$

$$
\begin{aligned}
& =7+\frac{1}{\frac{1}{\sqrt{56}-7}} \\
& =7+\frac{1}{\frac{\sqrt{56}+7}{7}} \\
& =7+\frac{1}{2+\frac{\sqrt{56}-7}{7}} \\
& =7+\frac{1}{2+\frac{\frac{1}{7}}{\sqrt{56}-7}} \\
& =7+\frac{1}{2+\frac{1}{\sqrt{56}+7}} \\
& =7+\frac{1}{2+\frac{1}{14+(\sqrt{56}-7)}}
\end{aligned}
$$

Therefore the continued fraction expansion of $\sqrt{56}$ is

$$
[7 ; \overline{2,14}]
$$

(ii) It is easily seen that

$$
\left(u_{1}, v_{1}\right)=(15,2)
$$

is a solution of $x^{2}-56 y^{2}=1$ since

$$
\begin{aligned}
x_{1}^{2}-56 y_{1}^{2} & =(15)^{2}-56(2)^{2} \\
& =1
\end{aligned}
$$

(iii) Note that by (3), if $\left(u_{1}, v_{1}\right)=(15,2)$ is the fundamental solution of $x^{2}-56 y^{2}=1$, then the other solutions (u_{n}, v_{n}) of $x^{2}-56 y^{2}=1$ can be derived by using the equalities

$$
\left(u_{n}+v_{n} \sqrt{56}\right)=\left(u_{1}+\sqrt{56} v_{1}\right)^{n} \text { for } n \geq 2 \text {, in other words, }
$$

$$
\binom{u_{n}}{v_{n}}=\left(\begin{array}{cc}
u_{1} & 56 v_{1} \\
2 & u_{1}
\end{array}\right)^{n}\binom{1}{0}
$$

for $n \geq 2$. Therefore it can be shown by induction on n that

$$
u_{n}=31\left(u_{n-1}-u_{n-2}\right)+u_{n-3}
$$

and also

$$
v_{n}=31\left(v_{n-1}-v_{n-2}\right)+v_{n-3}, \quad \text { for } n \geq 4
$$

Now we consider the problem

$$
x^{2}-56 y^{2}=256
$$

Note that we denote the integer solutions of $x^{2}-56 y^{2}=256$ by $\left(x_{n}, y_{n}\right)$, and denote the integer solutions of $x^{2}-56 y^{2}=1$ by $\left(u_{n}, v_{n}\right)$. Then we have the following theorem.

Theorem 2.2:

Define a sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ of positive integers by

$$
\begin{gathered}
\left(x_{1}, y_{1}\right)=(240,32) \\
x_{n}=240 u_{n-1}+1792 v_{n-1} \\
y_{n}=32 u_{n-1}+240 v_{n-1}
\end{gathered}
$$

and
where $\left\{\left(u_{n}, v_{n}\right)\right\}$ is a sequence of positive solutions of $x^{2}-56 y^{2}=1$. Then
(1) $\left(x_{n}, y_{n}\right)$ is a solution of $x^{2}-56 y^{2}=256$ for any integer $n \geq 1$.
(2) For $n \geq 2$,

$$
\begin{gathered}
x_{n+1}=15 x_{n}+112 y_{n} \\
y_{n+1}=2 x_{n}+15 y_{n} .
\end{gathered}
$$

(3) For $n \geq 4$

$$
\begin{aligned}
& x_{n}=31\left(x_{n-1}-x_{n-2}\right)+x_{n-3} \\
& y_{n}=31\left(y_{n-1}-y_{n-2}\right)+y_{n-3}
\end{aligned}
$$

Proof:
(1) It is easily seen that

$$
\left(x_{1}, y_{1}\right)=(240,32)
$$

is a solution of $x^{2}-56 y^{2}=256$ since

$$
\begin{aligned}
x_{1}^{2}-56 y_{1}^{2} & =(240)^{2}-56(32)^{2} \\
& =256\left(15^{2}-56\left(2^{2}\right)\right) \\
& =16(1) \\
& =16
\end{aligned}
$$

Note that by definition, $\left(u_{n-1}, v_{n-1}\right)$ is a solution of $x^{2}-56 y^{2}=1$, that is,

$$
\begin{equation*}
u_{n-1}^{2}-56 v_{n-1}^{2}=1 . \tag{7}
\end{equation*}
$$

Also we see as above that $\left(x_{1}, y_{1}\right)$ is a solution of $x^{2}-56 y^{2}=256$, that is,

$$
\begin{equation*}
x_{1}^{2}-56 y_{1}^{2}=256 \tag{8}
\end{equation*}
$$

Applying (7) and (8), we get

$$
\begin{aligned}
x_{n}^{2}-56 y_{n}^{2} & =\left(240 u_{n-1}+1792 v_{n-1}\right)^{2}-56\left(32 u_{n-1}+240 v_{n-1}\right)^{2} \\
& =u_{n-1}^{2}\left(2^{8}\right)-v_{n-1}^{2}\left(2^{8}(56)\right) \\
& =2^{8}\left(u_{n-1}^{2}-56 v_{n-1}^{2}\right) \\
& =2^{8}
\end{aligned}
$$

Therefore $\left(x_{n}, y_{n}\right)$ is a solution of $x^{2}-56 y^{2}=2^{8}$.
(2) Recall that

$$
x_{n+1}+y_{n+1} \sqrt{d}=\left(u_{1}+v_{1} \sqrt{d}\right)\left(x_{n}+y_{n} \sqrt{d}\right)
$$

Therefore
$x_{n+1}=u_{1} x_{n}+v_{1} y_{n} d \quad$ and $\quad y_{n+1}=v_{1} x_{n}+u_{1} y_{n}$
$x_{n+1}=15 x_{n}+112 y_{n} \quad$ and $\quad y_{n+1}=2 x_{n}+15 y_{n}$
Since $u_{1}=15$ and $v_{1}=2$.
(3) Applying the equalities

$$
x_{n}=2^{3}(13) u_{n-1}+2^{4}(42) v_{n-1} \text { and } x_{n+1}=13 x_{n}+84 y_{n}
$$

We find by induction on n that

$$
x_{n}=31\left(x_{n-1}-x_{n-2}\right)+x_{n-3}
$$

for $n \geq 4$. Similarly it can be shown that

$$
y_{n}=31\left(y_{n-1}-y_{n-2}\right)+y_{n-3} .
$$

Corollary 2.3:

The base of the transformation T in (2) is the fundamental solution of \widetilde{D}, that is $T[h ; k]=\{h, k\}=$ $\left\{x_{1}, y_{1}\right\}$.
Proof: We proved that $\left(x_{1}, y_{1}\right)=(240,32)$ is the fundamental solution of \widetilde{D}. Also we showed that $h=16$ and $k=-2$. So the base of T is $T[h, k]=\{16,-2\}$ as we claimed. We saw as above that the Diophantine equation D could be transformed into the Diophantine equation \widetilde{D} via the transformation T. Also we showed that $K=x+16$ and $R=y-2$. So we can retransfer all results from \widetilde{D} to D by using the inverse of T. Thus we can give the following main theorem

Theorem 2.4:

Let D be the Diophantine equation in (1), Then
(1) The fundamental solution of D is $\left(K_{1}, R_{1}\right)=(256,30)$.
(2) Define the sequence $\left\{\left(K_{n}, R_{n}\right)\right\}_{n \geq 1}=\left\{\left(x_{n}+16, y_{n}-2\right)\right\}$, where $\left\{\left(x_{n}, y_{n}\right)\right\}$ defined in (*).

Then $\left(K_{n}, R_{n}\right)$ is a solution of D. So it has infinitely many solutions $\left(K_{n}, R_{n}\right) \in \boldsymbol{Z} \times \boldsymbol{Z}$.
(3) The solution $\left(K_{n}, R_{n}\right)$ satisfy

$$
\begin{aligned}
& K_{n}=15 K_{n-1}+112 R_{n-1} \\
& R_{n}=2 K_{n-1}+15 R_{n-1}-4
\end{aligned}
$$

(4) The solutions (K_{n}, R_{n}) satisfy the recurrence relations

$$
\begin{aligned}
& K_{n}=31\left(K_{n-1}-K_{n-2}\right)+K_{n-3} \\
& R_{n}=31\left(R_{n-1}-R_{n-2}\right)+R_{n-3}
\end{aligned}
$$

Proof:

(1) It is easily seen that $\left(K_{1}, R_{1}\right)=(256,30)$ is the fundamental solution of D since $256^{2}-$ $56(30)^{2}-32(256)-224(30)-224=0$.
(2) We prove it by induction. Let $n=1$. Then $\left(K_{1}, R_{1}\right)=\left(x_{1}+16, y_{1}-2\right)=(256,30)$ which is the fundamental solution and so is a solution of D. Let us assume that the Diophantine equation in (1) is satisfied for $n-1$, that is, $\left(x_{n-1}+16\right)^{2}-56\left(y_{n-1}-2\right)^{2}-32\left(x_{n-1}+16\right)-$ $224\left(y_{n-1}-2\right)-224=0$. We want to show that this equation is also satisfied for n.

$$
\begin{array}{rl}
K^{2}-56 R^{2}-32 & K-224 R-224 \\
& =\left(x_{n}+16\right)^{2}-56\left(y_{n}-2\right)^{2}-32\left(x_{n}+16\right)-224\left(y_{n}-2\right)-224 \\
& =x_{n}^{2}-56 y_{n}^{2}-256 \\
& =0 \quad\left(x_{n} \text { and } y_{n} \text { solutions of } \widetilde{D}\right) .
\end{array}
$$

So $\left(K_{n}, R_{n}\right)=\left(x_{n}+16, y_{n}-2\right)$ is also a solution D.

$$
\begin{equation*}
\text { From }\left({ }^{*}\right) \quad x_{n}=15 x_{n-1}+112 y_{n-1} . \tag{3}
\end{equation*}
$$

Adding 16 on both sides,

$$
x_{n}+16=15 x_{n-1}+112 y_{n-1}+16
$$

We know that $\quad K_{n}=x_{n}+16$ and $\quad R_{n}=y_{n}-2$
Therefore, $\quad x_{n}=K_{n}-16$ and $y_{n}=R_{n}+2$

$$
\begin{align*}
x_{n}+16 & =13 x_{n-1}+84 y_{n-1}+16 \\
\left(K_{n}-16\right)+16 & =15\left(K_{n-1}-16\right)+112\left(R_{n-1}+2\right)+16 \\
K_{n} & =15 K_{n-1}+112 R_{n-1} \tag{9}\\
R_{n} & =2 K_{n-1}+15 R_{n-1}-4 \tag{10}
\end{align*}
$$

We get,
(4) We prove that x_{n} satisfy the recurrence relation. For $n=4$, we get $K_{1}=256, K_{2}=7200$,
$K_{3}=215296, K_{4}=6451232$. Hence

$$
\begin{aligned}
K_{4} & =31\left(K_{3}-K_{2}\right)+K_{1} \\
& =31(215296-7200)+256
\end{aligned}
$$

So $K_{4}=31\left(K_{3}-K_{2}\right)+K_{1}$ is satisfied for $n=4$. Let us assume that this relation is satisfied for $n-1$, that is,

$$
\begin{equation*}
K_{n-1}=31\left(K_{n-2}-K_{n-3}\right)+K_{n-4} \tag{11}
\end{equation*}
$$

Then applying the previous assertion, (9) and (11), we conclude that $K_{n}=31\left(K_{n-1}-K_{n-2}\right)+K_{n-3}$ for $n \geq 4$.

Now prove that y_{n} satisfy the recurrence relation. For $n=4$, we get $R_{1}=30, R_{2}=958, R_{3}=28766$,
$R_{4}=862078$. Hence

$$
\begin{aligned}
R_{4} & =31\left(R_{3}-R_{2}\right)+R_{1} \\
& =31(28766-958)+30
\end{aligned}
$$

So $R_{n}=31\left(R_{n-1}+R_{n-2}\right)-R_{n-3}$ is satisfied for $n=4$. Let us assume that this relation is satisfied for $n-1$, that is,

$$
\begin{equation*}
R_{n-1}=31\left(R_{n-2}-R_{n-3}\right)+R_{n-4} \tag{12}
\end{equation*}
$$

Then applying the previous assertion, (10) and (12), we conclude that $R_{n}=31\left(R_{n-1}-R_{n-2}\right)+R_{n-3}$, for $n \geq 4$.

3. Conclusion

Diophantine equations are rich in variety. There is no universal method for finding all possible solutions (if it exists) for Diophantine equations. The method looks to be simple but it is very difficult for reaching the solutions.

References

[1]. S.P. Arya. On the Brahmagupta- Bhaskara equation. math. Ed. 8(1) (1991), 23-27.
[2]. C. Baltus. Continued fraction and the Pell equations: The work of Euler and Lagrange. Comm. Anal. Theory Continued Fraction 3(1994), 4-31.
[3]. E. Barbeau. Pell's equation. Springer Verleg, 2003.
[4]. H.P. Edward. Fermat's Last Theorem. A Graduate Texts in Mathematics, 50. Springer - verleg, New York, 1996.
[5]. D. Hensley. Continued Fractions. World Scientific Publishing, Hackensack, N. J, 2006.
[6]. P. Kaplan, K. S. Williams. Pell's equations $x^{2}-m y^{2}=-1,-4$ and Continued Fractions. Journal of Number theory 23(1986),169-182.
[7]. H.W. Lenstra. Solving The Pell's equation. Notice of the AMS 49(2)2002, 182 - 192.
[8]. K. Mathews. The Diophantine equation $x^{2}-D y^{2}=N, D>0$. Expositiones Math. J.
[9]. R. A. Mollin. A.J. Poorten, H. C. Williams. Halfway to a solution of $x^{2}-D y^{2}=-3$. Journal de Theorie des Nombres Bordeaux 6(1994), 421 - 457.
[10]. R.A. Mollin. Simple Continued Fraction solutions for Diophantine equations. Expositiones Math. 19(1) (2001), 55-73.
[11]. R.A. Mollin. The Diophantine equation $a x^{2}-b y^{2}=c$ and simple Continued Fractions. Int. Math. J.2(1)(2002), 1-6.
[12]. R.A. Mollin. A note on the Diophantine equation $D_{1} x^{2}+D^{2}=a k^{n}$. Acta Math. Acad. Paed. Nyiring. 21(2005), 21-24.
[13]. R.A. Mollin. Quadratic Diophantine Equations $x^{2}-D y^{2}=c^{n}$. Irish Math. Soc. Bulletin 58(2006), 55-68.
[14]. I. Niven, H.S. Zuckerman , H.L. Montgometry. An Introduction to the Theory of Numbers. Fifth Edition, John Wiley\& Sons, Inc., New York, 1991.
[15]. P.Stevenhagen. A density conjecture for the Negative Pell Equation. Computational Algebra and Number theory, Math. Appl. 325(1992), 187 - 200.
[16]. Manju Somanath and J. Kannan "Congruum Problem", International Journal of Pure and Applied Mathematical Sciences (IJPAMS), Volume 9, Number 2 (2016), pp. 123-131.
[17]. Manju Somanath, J. Kannan and K .Raja, "Integral Solutions of an Infinite Elliptic Cone $x^{2}=4 y^{2}+5 z^{2 "}$, IJIRSET, Volume 5, Issue10, October 2016, pp .17551-17557.
[18]. Manju Somanath, J. Kannan and K .Raja, "Lattice Points of an Infinite Cone $x^{2}+y^{2}=85 z^{2}$ ", International Journal of Recent Innovation in Engineering and Research(IJRIER), Vol. 1 Issue. 5, September 2016, pp. 14-17.
[19]. Manju Somanath, J. Kannan and K .Raja, "Integral Solutions of an Infinite Cone $\alpha\left(x^{2}+y^{2}\right)=(2 a-1) x y+(4 \alpha-1) z^{2}$ ", International Journal for Research in Applied Science and Engineering Technology, Vol. 4 Issue X, October 2016, pp(504-507).
[20]. Manju Somanath, J. Kannan and K .Raja "Lattice Points of an Infinite Cone $x^{2}+y^{2}=\left(\alpha^{2 n}+\beta^{2 n}\right) z^{2}$ ", International Journal of Mathematical Trends and Technology, Vol. 38 No. 2, October 2016, pp(95-98).

[^0]: *Assistant Professor, Department of Mathematics, National College, Trichy, Tamil Nadu, India.
 **Assistant Professor, Department of Mathematics, National College, Trichy, Tamil Nadu, India.
 ***Research Scholar, Department of Mathematics, National College, Trichy, Tamil Nadu, India.

