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  Abstract  

 
 

Let 𝑃 ≔ 𝑃(𝑡) be a polynomial in 𝒁 𝑥 . In this paper, we consider the 

polynomial solutions of Diophantine equation 𝐷: 𝐾2 − 56𝑅2 −
32𝐾 − 224𝑅 − 224 = 0. We also obtain some formulae and 

recurrence relations on the polynomial solution (𝐾𝑛 , 𝑅𝑛) of 𝐷. 
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1. Introduction  

A Diophantine equation is a polynomial equation 𝑃 𝑥1 , 𝑥2 , ⋯ , 𝑥𝑛 = 0 where the polynomial 𝑃 has integral 

coefficients and one is interested in solutions for which all the unknowns take integer values. For example, 

𝑥2 + 𝑦2 = 𝑧2 and 𝑥 = 3, 𝑦 = 4, 𝑧 = 5 is one of its infinitely many solutions. Another example is 𝑥 + 𝑦 = 1 

and all its solutions are given by 𝑥 = 𝑡, 𝑦 = 1 − 𝑡 where 𝑡 passes through all integers. A third example is 

𝑥2 + 4𝑦 = 3. This Diophantine equation has no solutions, although note that 𝑥 = 0, 𝑦 =
3

4
 is a solution with 

rational values for the unknowns. Diophantine equations are rich in variety. Two – variable Diophantine 

equation have been a subject to extensive research, and their theory constitutes one of the most beautiful, 

most elaborate part of mathematics, which nevertheless still keeps some of its secrets for the next generation 

of researchers. 

 In this paper, we investigate positive integral solutions of the Diophantine equation 𝐾2 − 56𝑅2 −
32𝐾 − 224𝑅 − 224 = 0  which is transformed into a Pell’s equation and is solved by various methods. 

 

2. THE DIOPHANTINE EQUATION     𝑲𝟐 − 𝟓𝟔𝑹𝟐 − 𝟑𝟐𝑲 − 𝟐𝟐𝟒𝑹 − 𝟐𝟐𝟒 = 𝟎 

Consider the Diophantine equation  

                                                   𝐷: 𝐾2 − 56𝑅2 − 32𝐾 − 224𝑅 − 224 = 0                                                    (1) 

to be solved over  𝒁.  It is not easy to solve and find the nature and properties of the solutions of (1). So we 

apply a linear transformation 𝑇 to (1) to transfer to a simpler form for which we can determine the integral 

solutions. 

Let                                                                      𝑇:  
𝐾 = 𝑥 + ℎ
𝑅 = 𝑦 + 𝑘

                                                                         (2) 

be the transformation where ℎ, 𝑘 ∈ 𝒁. 
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Applying 𝑇 to 𝐷, we get  

               𝑇 𝐷 = 𝐷 :  𝑥 + ℎ 2 − 56 𝑦 + 𝑘 2 − 32 𝑥 + ℎ − 224 𝑦 + 𝑘 = 224                                         (3) 

Equating the coefficients of 𝑥 and 𝑦 to zero, we get ℎ = 16 and 𝑘 = −2. Hence for 𝐾 = 𝑥 + 16 and 𝑅 = 𝑦 −
2, we have the Diophantine equation   

                                                                   𝐷 :  𝑥2 − 56𝑦2 = 256                                                                     (4) 

which is a Pell equation. Now we try to find all integer solutions  (𝑥𝑛 , 𝑦𝑛 ) of  𝐷  and then we can retransfer all 

results from 𝐷  to 𝐷 by using the inverse of 𝑇. 
Theorem 2.1: 

 Let 𝐷  be the Diophantine equation in (4). Then  

(i) The continued fraction expansion of  56    is  

 56 = [7; 2, 14      ] 

(ii) The fundamental solution of  𝑥2 − 56𝑦2 = 1 is  𝑢1 , 𝑣1 =  15, 2  

(iii) For 𝑛 ≥ 4, 

𝑢𝑛 = 31 𝑢𝑛−1 − 𝑢𝑛−2 + 𝑢𝑛−3 

𝑣𝑛 = 31 𝑣𝑛−1 − 𝑣𝑛−2 + 𝑣𝑛−3 

Proof: 

(i) The continued fraction expansion of  56  = 7 +   56 − 7  

= 7 +
1
1

 56−7

 

= 7 +
1

 56+7

7

 

      = 7 +
1

2 +
 56−7

7

 

      = 7 +
1

2 +
1

7

 56−7

 

                               = 7 +
1

2 +
1

 56+7

 

                                        = 7 +
1

2 +
1

14+  56 −7 

 

Therefore the continued fraction expansion of  56  is  

[7; 2, 14      ] 
          (ii)  It is easily seen that  

 𝑢1, 𝑣1 = (15, 2) 

is a solution of 𝑥2 − 56𝑦2 = 1 since  

                                                                𝑥1
2 − 56𝑦1

2 =  15 2 − 56 2 2 

                                                                                  = 1  

 

(iii)  Note that by (3), if  𝑢1, 𝑣1 = (15, 2) is the fundamental solution of 𝑥2 − 56𝑦2 = 1, then the other 

solutions (𝑢𝑛 , 𝑣𝑛) of 𝑥2 − 56𝑦2 = 1 can be derived by using the equalities    

 𝑢𝑛 + 𝑣𝑛 56  =  𝑢1 +  56 𝑣1 
𝑛

 for 𝑛 ≥ 2, in other words, 

 
𝑢𝑛

𝑣𝑛

 =  
𝑢1 56𝑣1

2 𝑢1
 

𝑛

 
1

0
  

for 𝑛 ≥ 2. Therefore it can be shown by induction on 𝑛 that  

𝑢𝑛 = 31 𝑢𝑛−1 − 𝑢𝑛−2 + 𝑢𝑛−3 

and also  

                                            𝑣𝑛 = 31 𝑣𝑛−1 − 𝑣𝑛−2 + 𝑣𝑛−3,                           for 𝑛 ≥ 4. 
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Now we consider the problem  

𝑥2 − 56𝑦2 = 256 

Note that we denote the integer solutions of  𝑥2 − 56𝑦2 = 256 by  𝑥𝑛 , 𝑦𝑛 , and denote the integer solutions 

of 𝑥2 − 56𝑦2 = 1 by  (𝑢𝑛 , 𝑣𝑛 ). Then we have the following theorem. 

 

 

Theorem 2.2: 

 Define a sequence {(𝑥𝑛 , 𝑦𝑛 )} of positive integers by 

 𝑥1 , 𝑦1 = (240, 32) 

and                                                             𝑥𝑛 = 240𝑢𝑛−1 + 1792𝑣𝑛−1 

𝑦𝑛 = 32𝑢𝑛−1 + 240𝑣𝑛−1, 
where {(𝑢𝑛 , 𝑣𝑛 )} is a sequence of positive solutions of 𝑥2 − 56𝑦2 = 1. Then 

(1) (𝑥𝑛 , 𝑦𝑛 ) is a solution of 𝑥2 − 56𝑦2 = 256 for any integer 𝑛 ≥ 1. 

 

(2) For 𝑛 ≥ 2, 

𝑥𝑛+1 = 15𝑥𝑛 + 112𝑦𝑛  

𝑦𝑛+1 = 2𝑥𝑛 + 15𝑦𝑛 . 

(3) For 𝑛 ≥ 4 

𝑥𝑛 = 31 𝑥𝑛−1 − 𝑥𝑛−2 + 𝑥𝑛−3 

𝑦𝑛 = 31 𝑦𝑛−1 − 𝑦𝑛−2 + 𝑦𝑛−3 

Proof: 

(1) It is easily seen that  

 𝑥1 , 𝑦1 = (240, 32) 

is a solution of 𝑥2 − 56𝑦2 = 256 since  

                                                                𝑥1
2 − 56𝑦1

2 =  240 2 − 56 32 2 

                                                                                  = 256(152 − 56(22)) 

                                                                                  = 16 1  

                                                                                  = 16  

Note that by definition,  𝑢𝑛−1, 𝑣𝑛−1  is a solution of 𝑥2 − 56𝑦2 = 1, that is, 

                                                                        𝑢𝑛−1
2 − 56𝑣𝑛−1

2 = 1.                                                                  (7) 

Also we see as above that (𝑥1 , 𝑦1) is a solution of 𝑥2 − 56𝑦2 = 256,  that is, 

                                                                       𝑥1
2 − 56𝑦1

2 = 256.                                                                      (8) 

Applying  (7) and (8), we get 

               𝑥𝑛
2 − 56𝑦𝑛

2 =  240𝑢𝑛−1 + 1792𝑣𝑛−1 
2 − 56 32𝑢𝑛−1 + 240𝑣𝑛−1 

2 

                                 = 𝑢𝑛−1
2  28 − 𝑣𝑛−1

2 (28(56)) 

                                 =  28 𝑢𝑛−1
2 − 56𝑣𝑛−1

2   

                                 = 28  
Therefore (𝑥𝑛  , 𝑦𝑛 ) is a solution of 𝑥2 − 56 𝑦2 = 28. 
 

(2) Recall that  

                 𝑥𝑛+1 + 𝑦𝑛+1 𝑑  =  𝑢1 + 𝑣1 𝑑  (𝑥𝑛 + 𝑦𝑛 𝑑 )   

Therefore  

𝑥𝑛+1 = 𝑢1𝑥𝑛 + 𝑣1𝑦𝑛𝑑    and          𝑦𝑛+1 = 𝑣1𝑥𝑛 + 𝑢1𝑦𝑛  

So                                       𝑥𝑛+1 = 15𝑥𝑛 + 112𝑦𝑛       and          𝑦𝑛+1 = 2𝑥𝑛 + 15𝑦𝑛                                     (*) 

Since 𝑢1 = 15 and 𝑣1 = 2.   

 

(3) Applying the equalities  

                     𝑥𝑛 = 23 13 𝑢𝑛−1 + 24 42 𝑣𝑛−1  and    𝑥𝑛+1 = 13𝑥𝑛 + 84𝑦𝑛  

We find by induction on 𝑛 that  

 𝑥𝑛 = 31 𝑥𝑛−1 − 𝑥𝑛−2 + 𝑥𝑛−3 

for 𝑛 ≥ 4. Similarly it can be shown that  

                                                               𝑦𝑛 = 31 𝑦𝑛−1 − 𝑦𝑛−2 + 𝑦𝑛−3. 
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Corollary 2.3: 

       The base of the transformation 𝑇 in (2) is the fundamental solution of 𝐷 , that is  𝑇 ℎ; 𝑘 =  ℎ, 𝑘 =
{𝑥1 , 𝑦1}.  

Proof:  We proved that  𝑥1 , 𝑦1 = (240,32) is the fundamental solution of 𝐷 . Also we showed that ℎ = 16 

and 𝑘 = −2. So the base of 𝑇 is 𝑇 ℎ, 𝑘 = {16, −2} as we claimed. We saw as above that the Diophantine 

equation 𝐷 could be transformed into the Diophantine equation 𝐷  via the transformation 𝑇. Also we showed 

that 𝐾 = 𝑥 + 16 and  𝑅 = 𝑦 − 2. So we can retransfer all results from 𝐷  to 𝐷 by using the inverse of 𝑇. Thus 

we can give the following main theorem 

Theorem 2.4: 

 Let 𝐷 be the Diophantine equation in (1), Then 

(1) The fundamental solution of 𝐷 is  𝐾1 , 𝑅1 =  256, 30 . 

(2) Define the sequence    𝐾𝑛 , 𝑅𝑛  𝑛≥1 =  (𝑥𝑛 + 16, 𝑦𝑛 − 2) , where {(𝑥𝑛 , 𝑦𝑛 )} defined in (*). 

Then (𝐾𝑛 , 𝑅𝑛) is a solution of 𝐷. So it has infinitely many solutions  𝐾𝑛 , 𝑅𝑛 ∈ 𝒁 × 𝒁. 

(3) The solution (𝐾𝑛 , 𝑅𝑛) satisfy  

𝐾𝑛 = 15𝐾𝑛−1 + 112𝑅𝑛−1 

                                                                           𝑅𝑛 = 2𝐾𝑛−1 + 15𝑅𝑛−1 − 4 

(4) The solutions (𝐾𝑛 , 𝑅𝑛) satisfy the recurrence relations 

𝐾𝑛 = 31 𝐾𝑛−1 − 𝐾𝑛−2 + 𝐾𝑛−3 

𝑅𝑛 = 31 𝑅𝑛−1 − 𝑅𝑛−2 + 𝑅𝑛−3 

Proof: 

(1) It is easily seen that  𝐾1 , 𝑅1 =  256, 30  is the fundamental solution of 𝐷 since 2562 −

56 30 2 − 32 256 − 224 30 − 224 = 0. 

(2) We prove it by induction. Let  𝑛 = 1. Then   𝐾1, 𝑅1 =  𝑥1 + 16, 𝑦1 − 2 = (256, 30) which is 

the fundamental solution and so is a solution of  𝐷. Let us assume that the Diophantine equation 

in (1) is satisfied for 𝑛 − 1, that is, 𝑥𝑛−1 + 16 2 − 56 𝑦𝑛−1 − 2 2 − 32 𝑥𝑛−1 + 16 −

224 𝑦𝑛−1 − 2 − 224 = 0. We want to show that this equation is also satisfied for  𝑛.   

  𝐾2 − 56𝑅2 − 32𝐾 − 224𝑅 − 224

=  𝑥𝑛 + 16 2 − 56 𝑦𝑛 − 2 2 − 32 𝑥𝑛 + 16 − 224 𝑦𝑛 − 2 − 224 

                             = 𝑥𝑛
2 − 56𝑦𝑛

2 − 256 

                       = 0                                                 ( 𝑥𝑛  and 𝑦𝑛  solutions of 𝐷 ). 

So  𝐾𝑛 , 𝑅𝑛 = (𝑥𝑛 + 16, 𝑦𝑛 − 2) is also a solution 𝐷. 
 

(3) From (*)      𝑥𝑛 = 15𝑥𝑛−1 + 112𝑦𝑛−1.  

 

Adding 16 on both sides,  

       𝑥𝑛 + 16 = 15𝑥𝑛−1 + 112𝑦𝑛−1 + 16 

We know that          𝐾𝑛 = 𝑥𝑛 + 16     and         𝑅𝑛 = 𝑦𝑛 − 2  

Therefore,                𝑥𝑛 = 𝐾𝑛 − 16     and         𝑦𝑛 = 𝑅𝑛 + 2 

𝑥𝑛 + 16 = 13𝑥𝑛−1 + 84𝑦𝑛−1 + 16 

                𝐾𝑛 − 16 + 16 = 15 𝐾𝑛−1 − 16 + 112 𝑅𝑛−1 + 2 + 16 

We get,                                                        𝐾𝑛 = 15𝐾𝑛−1 + 112𝑅𝑛−1                                                            (9) 

Similarly,                                                     𝑅𝑛 = 2𝐾𝑛−1 + 15𝑅𝑛−1 − 4                                                       (10) 

(4) We prove that 𝑥𝑛  satisfy the recurrence relation. For 𝑛 = 4, we get 𝐾1 = 256, 𝐾2 = 7200,  

𝐾3 = 215296,  𝐾4 = 6451232. Hence  

𝐾4 = 31 𝐾3 − 𝐾2 + 𝐾1 

                      = 31 215296 − 7200 + 256 

So  𝐾4 = 31 𝐾3 − 𝐾2 + 𝐾1  is satisfied for  𝑛 = 4.  Let us assume that this relation is satisfied for 𝑛 − 1, that  

is, 

                                              𝐾𝑛−1 = 31 𝐾𝑛−2 − 𝐾𝑛−3 + 𝐾𝑛−4                                                     (11) 

Then applying the previous assertion, (9) and (11), we conclude that  𝐾𝑛 = 31 𝐾𝑛−1 − 𝐾𝑛−2 + 𝐾𝑛−3 

for 𝑛 ≥ 4. 
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Now   prove that 𝑦𝑛  satisfy the recurrence relation. For 𝑛 = 4, we get 𝑅1 = 30, 𝑅2 = 958, 𝑅3 = 28766,  
𝑅4 = 862078 .  Hence  

𝑅4 = 31 𝑅3 − 𝑅2 + 𝑅1 

               = 31 28766 − 958 + 30 

So 𝑅𝑛 = 31 𝑅𝑛−1 + 𝑅𝑛−2 − 𝑅𝑛−3 is satisfied for  𝑛 = 4.  Let us assume that this relation is satisfied for 

𝑛 − 1, that  is, 

                                                  𝑅𝑛−1 = 31 𝑅𝑛−2 − 𝑅𝑛−3 + 𝑅𝑛−4                      (12) 

Then applying the previous assertion, (10) and (12), we conclude that  𝑅𝑛 = 31 𝑅𝑛−1 − 𝑅𝑛−2 + 𝑅𝑛−3, for 

𝑛 ≥ 4. 

 

3. Conclusion  

          Diophantine equations are rich in variety. There is no universal method for finding all possible 

solutions (if it exists) for Diophantine equations. The method looks to be simple but it is very difficult for 

reaching the solutions. 
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